
Instrumental Conditioning IV:
actor/critic in our brain?

PSY/NEU338: Animal learning and decision making: 
Psychological, computational and neural perspectives

• The idea: given the current situation, history does not matter
• P(St+1|S1,S2,…,St,a1,a2,…,at) = P(St+1|St,at)
• P(rt|S1,S2,…,St,a1,a2,…,at) = P(rt|St,at)
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Markov Decision Processes
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World: “You are in state 34. Your immediate reward is 3. You have 2 actions” 
Robot: “I’ll take action 1”

World: “You are in state 77. Your immediate reward is -7. You have 3 actions”
Robot: “I’ll take action 3”

The task description requires no memory 
(doesn’t mean that the decision maker does not 
use memory to solve the task!)
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Stylized task: described fully by 
S,A,R,T

(policy dependent) State values: 
Vπ(S) = E[sum of future rewards|S,π]

V(S0) = ?
A.  4.2
B.  2.4
C. 2
D. 2.8
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learning a policy for MDPs
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can this value help 
choose actions?
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computing the value of actions
(policy dependent) State-Action values: 

Qπ(action | state) = E[sum of future rewards|S,a,π]

• Q(L | S0) = ?

• Q(R | S0) = ?

• which action is better?
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learning optimal policies

Optimal policy: in terms of future rewards; a policy that 
obtains the largest possible amount of reward overall

How to learn an optimal policy?

OPTION 1: “batch” algorithm:

• behave according to current policy

• estimate Q values based on experience

• improve policy based on these Q values

• repeat
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learning optimal policies

Optimal policy: in terms of future rewards; a policy that 
obtains the largest possible amount of reward overall

How to learn an optimal policy?

OPTION 2: “online” algorithm:

• behave according to current Q values

• calculate prediction error after every action

• update Q value based on prediction error

• repeat

• δt+1 = rt + Q(at+1 | St+1) - Q(at | St) (SARSA)
   or 
δt+1 = rt + maxaQ(a | St+1) - Q(at | St) (Q-learning)

• Q(at | St)new = Q(at | St)old + ηδt+1

• choose actions according to softmax: p(a|S) ∝ eβQ(S,a)
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compare to:
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summary so far...

• Modeling instrumental conditioning (action 
selection): several models have been proposed 
(Q learning, SARSA, Actor/Critic)

• in all cases reinforcement learning uses predictive 
values to inform choice

• remember: all this works only in MDPs (but many 
problems can be represented as MDPs or 
approximated by MDPs)
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does the brain really use 
actor/critic learning?
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• δt+1 = rt + Q(at+1 | St+1) - Q(at | St) (SARSA)

• δt+1 = rt + maxaQ(a | St+1) - Q(at | St) (Q-learning)

• δt+1 = rt + V(St+1) - V(St) (Actor/Critic)
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how can we tell the models apart?



what do dopamine prediction 
errors represent at trial onset?

13Morris et al. 2006
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what do dopamine prediction 
errors represent at trial onset?
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reward receipt

stimulus on (by chosen action)
forced
choice

what do dopamine prediction 
errors represent at trial onset?

forced
choice

summary so far...

• In the brain: evidence for division between 
prediction learning and policy learning (Actor/Critic)

• But: nature of prediction errors themselves suggests 
otherwise

• Not only do the models inform us about the brain, 
but the brain can inform us about the models!

• But… what about modeling free operant behavior?
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